SYNTHETIC LONG DRAIN Gear Oils

Description:

VALUE TECH Synthetic Long Drain Gear Oils are premium quality, long drain synthetic gear oils designed for extended drain service according to the listed OEM specifications in truck and heavy duty equipment differentials. They are non-licensed products, containing fully tested and field proven additive technology that demonstrates outstanding wear protection and oxidation resistance throughout a $500,000-$ mile service life in over-the road trucks.

VALUE TECH Synthetic Long Drain Gear Oils are

 recommended for use in differentials with hypoid gears and, where applicable, manual transmissions found in trucks, heavy equipment and cars.
VALUE TECH Synthetic Long Drain Gear Oils are

 formulated for use in applications according to the listed performance specifications and the appropriate viscosity.\checkmark API GL-5 \& MT-1
\checkmark MIL-PRF-2105E
\checkmark International/Navistar TMS-6816
\checkmark Arvin/Meritor 0-76N (75W-90), 0-80 (80W-140)
\checkmark MACK JO-J Plus
\checkmark Dana SHAES 256 (Easton PS-163)

Features/Benefits:

\checkmark High Quality EP Additives
\checkmark Resists Heat Degradation and Deposits
\checkmark Anti-rust, Anti-foam
\checkmark Seal Flexibility Additives Help Prevent Leaks and Promote Seal Life
\checkmark Maintains Viscosity During Severe Service
\checkmark Excellent Cold Temperature Properties
\checkmark Compatible with Most Limited Slip Differentials

Physical \& Chemical Properties:

Grade	$\mathbf{7 5 W}-90$	$\mathbf{8 0 W - 1 4 0}$
Viscosity @ $100^{\circ} \mathrm{C}, \mathrm{cSt}$	16.7	26.5
Viscosity @ $40^{\circ} \mathrm{C}$ cSt	130.9	260.4
Viscosity Index	137	132
Density, lb/gal	7.318	7.397
Flash Point, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$212(414)$	$216(421)$
Fire Point, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$224(435)$	$228(442)$
Pour Point, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$-51(-60)$	$-40(-40)$
Brookfield Viscosity	$99500\left(-40^{\circ} \mathrm{C}\right)$	$61500\left(-40^{\circ} \mathrm{C}\right)$
Foam Tendency	$0 / 0 / 0$	$0 / 0 / 0$
Copper Corrosion	1 b	1 b

